Karl-Ludwig Hoffmann, Gerhard Maas, and Manfred Regitz*

Chemistry Department, University of Kasierslautern, D-6750 Kaiserslautern, Federal Republic of Germany

Received June 11, 1986

Electrophilic diazoalkane substitution of the diazo esters 7a and b with 2,4,6-trimethylpyrylium tetrafluoroborate (6a) results in the formation of the 4-(diazomethyl)-4H-pyrans 8a and b as well as the 1H-1,2-diazepines 13a and b. The latter are formed by a spontaneous isomerization of the primarily produced 2-(diazomethyl)-2H-pyrans 9a and b. In contrast, analogous reactions of 4-methyl-2,6-diphenylpyrylium tetrafluoroborate (6b) with 7a and b only furnish the diazo compounds 8c and d. Allylpalladium chloride catalyzed decomposition of 8a-d in benzene at room temperature leads to the oxepines 14a-d (92-98% yield). When 14a and b are subjected to chromatography on Kieselgel, both oxepines isomerize to cyclohexadienones 18a and b and phenols 19a and b. The oxepines 14a-d react with the triazolinedione 23 to form the Diels-Alder adducts 25a-d, which are derived from the valence tautomeric benzene oxides 15a-d. Only in the case of the reaction of 14c with 23 does the oxepine form itself undergo [4 + 2] cycloaddition to give **26c**, which subsequently isomerizes in a hetero Cope rearrangement to 27c.

The valence tautomeric system oxepine/benzene oxide $(1 \rightleftharpoons 2)$ plays a significant role in the understanding of electrocyclic reactions and has been studied intensively.² With the metal-catalyzed decomposition of 4-(diazomethyl)-4H-pyrans 3,³ we have found a new access to this system and have used it for the synthesis of 2,7-di-tertbutyl-substituted oxepines.¹ The reaction $3 \rightarrow 1 \approx 2$ proceeds smoothly only when R = alkyl; when R = H, a rapid 1,2 H shift $(3 \rightarrow 4)^4$ completely suppresses the ring-expansion reaction. Intramolecular cyclopropanation $(3 \rightarrow 5)$, which also takes place at the expense of the oxepine formation, has been observed in the case of benzocondensed (diazomethyl)pyrans⁵ (Scheme I).

In the present investigations, we were interested in the question of whether pyrylium salts with less sterically demanding substituents (6; $R^1 = Me$, Ph in place of t-Bu) could be converted via (diazomethyl)pyrans into the corresponding oxepine/benzene oxide systems.

Results

4-(Diazomethyl)-4-methyl-4H-pyrans 8. The pyrylium salt 6a required for the electrophilic diazoalkane substitution⁶ was prepared by reported methods; we have prepared the compound 6b in high yield (85%) by the reaction of 2,6-diphenylpyrylium perchlorate with methylmagnesium iodide in ether followed by hydride cleavage using triphenylcarbenium tetrafluoroborate in acetonitrile.

Since the diazo esters 7a and b did not react with the pyrylium salts 6a and b in the presence of triethylamine (pyrylium salts without substituents in the 4-position are readily susceptible to the electrophilic diazoalkane substitution under these conditions⁴), they were first metalated in 1/1 tetrahydrofuran/diethyl ether at -115 °C (7a) or -78 °C (7b) by butyllithium in hexane (Scheme II).

 (4) Regitz, M.; Khbeis, S. Chem. Ber. 1984, 117, 2233.
 (5) Facklam, T.; Hoffmann, K.-L.; Regitz, M. Chem. Ber., in press. (6) Review: Fink, J.; Regitz, M. Synthesis 1985, 569.

Subsequent reactions with 6a and b then gave the 4-(diazomethyl)-4-methyl-4H-pyrans as yellow to orange oils (8a,c,d) or yellow crystals (8b) after chromatographic workup. In the reactions of **6a** with the diazo esters **7a** and **b**, the 4-methyl-1H-1,2-diazepines 13a and **b** were isolated also. These products are derived from the 2-diazomethyl isomers 9a and 9b (see the following section).

The diazo compounds 8a-d are characterized by diazo vibrations in the IR spectra at 2075-2080 cm⁻¹, which are shifted to lower wavenumbers as compared with those of 7a and b (2092 or 2113 cm⁻¹). The compounds can be unequivocally differentiated from the possible constitutional isomers 9a-d by ¹H NMR spectroscopy. The two hydrogen atoms in positions 3 and 5 of 8a-d each exhibit the same chemical shifts (δ 4.62, 4.54, 5.50, 5.45). The same is true for the methyl groups in the 2- and 6-positions of **8a** and **b** (δ 1.81 and 1.83).

4-Methyl-1H-1,2-diazepines 13. As already mentioned, the 2-diazomethyl isomers 9a and b, produced in

⁽¹⁾ Carbenes. 31. Part 30: Hoffmann, K.-L.; Regitz, M. Chem. Ber. 1985, 118, 3700.

Vogel, E.; Günther, H. Angew, Chem. 1967, 79, 429; (2) Reviews: Angew. Chem., Int. Ed. Engl. 1967, 6, 385. Jerina, D. M.; Yagi, H.; Daly, J. W. Heterocycles 19733, 1, 267. Boyd, D. R. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Pergamon: New York, 1984; Vol. 7, p 547 ff_Boyd, D. R.; Jerina, D. M. In Heterocyclic Compounds; Hassner, A. Ed.; Wiley: New York, 1985; Vol. 42, Part 3, p 197 ff.

⁽³⁾ Hoffmann, K.-L.; Regitz, M. Tetrahedron Lett. 1983, 24, 5355.

addition to 8a and b in the reactions of 6a with 7a and b, isomerize to the 1H-1,2-diazepines 13a and b. We have no evidence for the formation of 13c and d in the electrophilic diazoalkane substitution⁶ of 6b with 7a and b(Scheme III).

The constitutions of the diazepines 13a and b, which gave correct microanalyses, were deduced from spectroscopic studies. The absorptions for the diazo groups in the IR spectra are missing; instead, strong NH bands in the region 3275-3330 cm⁻¹ are observed. Signals for the NH protons are also present in the ¹H NMR spectra (δ 7.25, 6.76). In the case of 13b, we assume that this hydrogen is at N-1 from the vicinal phosphorus coupling $({}^{3}J_{\rm HP} = 12.1 \text{ Hz})$. In addition to this proton, the ring skeleton of 13b possesses only the hydrogen at position 5, which exhibits a complicated but interpretable coupling pattern. The double quartet for 13a (δ 6.31) with ${}^{4}J_{H,H}$ couplings of 1.6 and 0.6 Hz resulting from the methyl groups in the 4- and 6-positions is split further in 13b by the phosphorus nucleus of the 7-dimethoxyphosphoryl group (δ 6.31 also, ${}^{4}J_{\text{H,H(4-Me)}} = 1.6 \text{ Hz}$, ${}^{4}J_{\text{H,H(6-Me)}} = 0.5 \text{ Hz}$, ${}^{4}J_{\text{H,P}} = 1.3 \text{ Hz}$). The magnitudes and assignments of all coupling constants were confirmed by double-resonance experiments.

In the ¹³C NMR spectra of 13a and b, all the resonances for the ring substituents are found directly. The carbonyl carbon atom of the acetyl group in position 3 has the greatest diagnostic significance (δ 198.4, 197.9). The occurrence of these signals impressively confirms the ringopening step $9 \rightarrow 10$. Of the ring carbon atoms, the azomethine carbon atoms C-3 resonate at the lowest field (δ 162.5, 162.0). The fact that this signal in the spectrum of 13b is not split by coupling with phosphorus was used for its assignment. The resonance for C-5 was unambiguously recognized in the proton-coupled ¹³C NMR spectrum; in the case of 13b, a ${}^{3}J_{CP}$ coupling of 15.4 Hz results in further splitting. That the resonance of C-7 occurs at the highest field (δ 133.3, 131.9) is as expected and is unequivocally confirmed by the large coupling with phosphorus in 13b (184.3 Hz). The magnitudes of the phosphorus-carbon couplings (2.5, 21.2 Hz) in the phosphoryl-substituted diazepine 13b also give decisive evidence for the assignments of the remaining ring carbon atoms C-4 and C-6. A comparison of the chemical shifts of 13b with those of 13a also permits assignment of the carbon atoms 4 and 6 in the latter product (see the Experimental Section).

In a mechanistic sense, the previously unknown 2-(diazomethyl)-2H-pyran/1H-1,2-diazepine rearrangement $9 \rightarrow$ 13 may be interpreted in the following way. Initially, an electrocyclic ring opening occurs to give the butadienyldiazo compound 10, a well-known step for 2H-pyrans.⁷

The diazo isomers 10 are not isolated, presumably because they undergo a rapid [1,7] cyclization to give the 3H-1,2diazepines 11. The final step in the reaction sequence is an H shift to afford 13. Literature precedents for the [1,7] ring closure of the butadienyldiazo compounds are known.8 In principle, a [1,5] ring closure starting from 10 to give the vinylpyrazoles 12 must also be discussed. In general, such reactions are observed when diazo compounds of the type 10 possess a sterically demanding group at the carbonyl carbon atom.^{1,9}

With the exception of methyl 1H-1,2-benzodiazepine-3-carboxylate,¹⁰ the compounds 13a and b are, to the best of our knowledge, the first representatives of noncondensed 1H-1,2-diazepines that are unsubstituted in the 1-position.¹¹ Compounds of the same structural type with acyl substituents at N-1 are stable, those with the alkyl groups in the same position are rather unstable;¹² in principle this could also be expected for 13a and b. 1H-Azepines, the parent compound of which undergoes ready tautomerization to 3H-azepine,¹³ are now stabilized by hydrogen-bond formation with the acyl groups in the 2-positions.¹⁴ When this is applied to the 1H-1,2-diazepines 13a and b, the substituents R^2 [CO₂Et, PO(OMe)₂] should exhibit the same effect; furthermore, the acceptor character of the acetyl groups in position 3 should also have a positive influence on the stability of the heterocycles.

Oxepines 14. Even at room temperature in benzene, the 4-(diazomethyl)-4-methyl-4H-pyrans 8a-d can be converted by treatment with allylpalladium chloride (dimer) to the oxepines 14a-d (92-98%) (Scheme IV). The reaction proceeds with elimination of nitrogen and [1,2] C shift. The products are obtained in the form of yellow to orange-red oils (14a-c) or orange crystals (14d). The oxepines 14c and d are purified by column chromatography on Kieselgel; however, this method is not suitable for 14a (chromatographic purification on basic aluminum oxide) and 14b (purification with active charcoal). The latter two oxepines undergo acid-catalyzed isomerizations to give cyclohexadienones and phenols $(14 \rightarrow 18 + 19)$ on Kieselgel. This reaction will be discussed in the next section.

The IR and ¹H and ¹³C NMR spectra of the oxepines 14a-d (see the Experimental Section) confirm the configurations proposed and require no interpretation. They are to a large extent in accord with those of the 4-accep-

⁽⁷⁾ See, e.g.: Balaban, A. T.; Nenitzcescu, C. Justus Liebigs Ann. Chem. 1959, 625, 74. Dimroth, K. Angew. Chem. 1960, 72, 331.

⁽⁸⁾ See: Robertson, J. R.; Sharp, J. T. Tetrahedron 1984, 40, 3095.

<sup>Further references to earlier publications are given therein.
(9) Anderson, C. D.; Sharp, J. T.; Strathdee, R. S. J. Chem. Soc.,</sup> Perkin Trans. 1 1979, 2209. Robertson, J. R.; Sharp, J. T. J. Chem. Soc., Chem. Commun. 1983, 1003. Theis, W.; Regitz, M. Tetrahedron 1985, 41, 2625

⁽¹⁰⁾ Padwa, A.; Nahm, S. J. Org. Chem. 1981, 46, 1402.

⁽¹¹⁾ Review: Sharp, J. T. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: New York, 1984; Vol. 7, p 595 ff.

⁽¹²⁾ Harris, D. J.; Snieckus, V. J. Chem. Soc., Chem. Commun. 1976, 844

⁽¹³⁾ Vogel, E.; Altenbach, H.-J.; Drossard, J.-M.; Schmickler, H.; Stegelmeier, H. Angew. Chem. 1980, 92, 1053; Angew. Chem., Int. Ed. Engl. 1980, 19, 1016.

⁽¹⁴⁾ Ayanger, N. R.; Purohit, A. K.; Tilak, B. D. J. Chem. Soc., Chem. Commun. 1981, 399.

tor-substituted 2,7-di-tert-butyl-5-methyloxepines.¹

Cyclohexadienones 18 and Phenols 19. As mentioned above, the 2,7-dimethyl-substituted oxepines 14a and b, in contrast to the phenyl-substituted members of the same series, 14c and d, cannot be purified by chromatography on (acidic) Kieselgel with ethyl acetate. As shown by experiments under the same reaction conditions, these two products each isomerize to give 2/1 mixtures of 18 and 19 in high yields. These mixtures can be cleanly separated by column chromatography (18a/19a) or by fractional crystallization (18b/19b) (Scheme V).

The phenols 19a and b are easily identifiable on account of the intense OH absorptions (3480, 3220 cm⁻¹). Decisive for the structural assignment of 19 (and thus the certain differentiation from the also feasible structure 22) is the magnitude of the coupling of the aromatic 5-hydrogen atom with phosphorus in the case of 19b (δ 6.85, ${}^{4}J_{\text{H,P}}$ = 6.2 Hz), which indicates the meta orientation of the two coupling nuclei.¹⁵ That the 2- and 2'-positions relative to the phosphoryl-substituted carbon atom are occupied by two methyl groups is shown by the equal couplings with phosphorus (δ 2.48, 2.50, ${}^{4}J_{H,P}$ = 1.8 Hz); this observation is also not in accord with the structure 22b.

In the ^{13}C NMR spectra of both 19a and b, resonances for six aromatic carbon atoms are seen and all can be assigned; in the case of the phosphoryl-substituted phenol 19b, the magnitude of the phosphorus coupling plays a decisive role in the assignments (see the Experimental Section).

First indications for the cyclohexadienone structures of 18a and b are given by the occurrence of CO absorptions $(1662, 1665 \text{ cm}^{-1})$ in the IR spectra. In the ¹H NMR spectra of the two unsaturated ketones, the hydrogen atoms 2-H resonate, as to be expected, at the lowest field $(\delta 6.36, 6.59)$. In the case of 18a, a long-range coupling with 4-methyl and 5-H protons is apparent as a broadening of the signal, whereas in 18b a pseudoquintet, resulting from the overlapping of two quartets, is observed. The proximity of the dimethoxyphosphoryl group in 18b makes itself noticeable by a typical cis ${}^{3}J_{H,P}$ coupling of 20.3 Hz.^{16,17} The 5-hydrogen atoms of both cyclohexadienones resonate at δ 6.04 and 6.05, respectively, and exhibit the ${}^{5}J_{\rm H,H}$ coupling (0.7, 0.8 Hz) characteristic for this system, 18,19 as well as an allylic coupling of 1.5 Hz with the 4-methyl protons. In the case of 18b, this signal has a ddd structure as a result of the above-mentioned and the ad-

ditional coupling with phosphorus (0.6 Hz).

Resonances at δ 206.4 and 205.5 in the ¹³C NMR spectra of 18a and b immediately signal the presence of CO functions. The magnitude of the coupling with phosphorus in the case of 18b (${}^{3}J$ = 19.9 Hz) definitively excludes the alternative structure 21b. The five further ring carbon atoms absorb in the expected regions (see the Experimental Section); only the low-field positions of the C-3 resonances (δ 146.2, 142.8) that are typical for α , β -unsaturated ketones need be emphasized.

The interpretation of the acid-catalyzed isomerization reaction is based on the assumption that small equilibrium amounts of the arene oxide, which, however, cannot be detected by NMR spectrometry, are present in the system $14 \rightleftharpoons 15$ and are initially protonated to give the oxonium ion 16. Subsequent opening of the hetero three-membered ring proceeds specifically and leads exclusively to the cation $17(A) \leftrightarrow 17(B)$. A following 1,2 methyl shift to both ends of the pentadienyl system and deprotonation are then responsible for the formation of 18 and 19. Arene oxide isomerization reactions of this type are known.²

Whether or not oxepines undergo acid-catalyzed (in this case Kieselgel) isomerization to cyclohexadienones and phenols seems to depend on whether or not a sufficient equilibrium concentration of the benzene oxide tautomer is present. This is apparently the case for the system 14a,b/15a,b but no longer so for 14c,d/15c,d. The phenyl groups in the 2- and 7-positions stabilize the monocyclic form to such an extent that the bicyclic tautomer, from which the isomerization starts, has no chance of existence. The fact that 4-acceptor-substituted 2,7-di-tert-butyloxepines also remain unchanged in the presence of Kieselgel¹ may be attributable to the same reason. In this case, however, it is the enormous steric effect of the two tertbutyl groups that prevents the formation of the benzene oxide tautomer.

A ring-opening reaction to form cation 20, which also starts from 16, does not take place, at least within the limits of detection by NMR; 21 and 22 cannot be detected in the crude products. This is presumably because the cation 17, as can be estimated qualitatively, is thermodynamically more stable than the isomer 20 and thus governs the product distribution²⁰ (Scheme VI).

The presence of the 1,3-diene moiety in 18a was confirmed chemically by a Diels-Alder reaction with the triazolinedione 23 to furnish the triazolopyridazine 24 (see the Experimental Section for spectroscopic data).

Triazolinedione Adducts 25 and 27. It is known from the cycloheptatrienes that they form cycloadducts derived from the valency tautomeric norcaradiene with dienophiles such as the triazolinedione 23 even when the diene is no longer detectable by spectroscopy as an equilibrium

⁽¹⁵⁾ Pretsch, E.; Clerc, T.; Seibel, J.; Simon, W. Tabellen zur Strukturaufklärung Organischem Verbindungen; Springer Verlag: Berlin, 1976; p H360.

⁽¹⁶⁾ Cf. ref 15.

 ⁽¹⁶⁾ Cf. ref 15.
 (17) Williams, D. H.; Fleming, I. Spektroskopische Methoden zur Strukturaufklärung, 4th ed.; Thieme Verlag: Stuttgart, 1979; p 145.
 (18) Jackman, L. M.; Sternhell, S. Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd ed.; Pergamon:

Oxford, 1969; p 342.

⁽¹⁹⁾ Günther, H. NMR-Spektroskopie; Thieme Verlag: Stuttgart, 1973; p 360.

⁽²⁰⁾ Jerina, D. M.; Daly, J. W.; Witkop, B. J. Am. Chem. Soc. 1968, 90, 6523.

partner.²¹ This is also true for the oxepines 14a, b, and d, which react smoothly with 23 in dichloromethane at room temperature to give the 1/1 adducts 25a, b, and d in 83-89% yields. These represent the Diels-Alder adducts of the bicyclic isomers 15a, b, and d. The corresponding reaction of 14c with 23 under otherwise identical conditions proceeds differently in that an isomer with the structure 27c (66%) is formed together with 25c (23%). The two urazoles can be separated by fractional crystallization. In this context, it should be mentioned that 4acceptor-substituted 2,7-di-tert-butyloxepines react with 23 to give exclusively products corresponding to 27^{1} (Scheme VII).

The structural confirmation of **27c** is relatively simple. The ¹H and ¹³C NMR spectroscopic data agree very well with those of an already known tricyclic compound with a slightly different substitution pattern [27; $R^1 = t$ -Bu, R^2 = PO(OMe)Ph]. The latter was obtained in the same manner from 2,7-di-*tert*-butyl-4-(methoxyphenylphosphoryl)-5-methyloxepine [14; $R^1 = t$ -Bu, $R^2 = PO$ -(OMe)Ph] and 23, and its structure was confirmed by an X-ray crystallographic analysis.¹ An interesting phenomenon in the ¹H NMR spectrum of 27c should be mentioned: as a result of the chiral carbon atoms of the three-membered ring, the two ethyl hydrogen atoms of the ester group are diastereotopic and appear as the AB part (16 lines) of an ABX₃ system (see the Experimental Section).

The structural assignment of the Diels-Alder adducts 25a-d is based mainly on the ¹³C NMR resonances of the skeletal carbon atoms: C-1/C-3, δ 156.0-156.5; C-9, δ 146.9-153.1; C-10, § 118.4-122.8; C-2, § 64.8-66.3; C-8, § 60.5-62.4; C-1a, & 54.1-59.7; C-8a, & 52.3-58.3.

Last doubts on the structures of the Diels-Alder adducts 25 were eliminated by an X-ray structural analysis of 25d (see Figure 1 (supplementary material)). Bond lengths and angles are normal and require no interpretation.

The varying reaction behaviors of the oxepines 14 with the triazolinedione 23 (formation of 25 and/or 27) depend on the substituents whereby two extreme situations have to be differentiated.

(a) $R^1 = Me$: In this case apparently only small amounts of the benzene oxide are in equilibrium with the oxepine, and these react with the strong dienophile 23 to form 25 and are rapidly replaced.

(b) $R^1 = t$ -Bu: For steric reasons (see the preceding section), an equilibrium concentration of the benzene oxide is not achieved so that the monocycle undergoes the [4 +2] cycloaddition with 23. The formation of 26 is followed

by a rapid hetero Cope rearrangement with formation of 27. Only few reactions of this type are known. $^{1,22-24}$

Finally, in the case of R = Ph, a situation is reached in which both possibilities can compete with each other (formation of 25 and 27).

Experimental Section

Melting points are uncorrected and were determined with a Mettler FP 61 apparatus (heating rate 3 °C/min). Microanalyses were obtained on a Perkin-Elmer Analyzer 240. IR spectra were recorded with a Perkin-Elmer 397 spectrophotometer. ¹H NMR spectra were obtained on Varian EM 390 and Bruker WP 200 spectrometers with tetramethysilane as internal standard. ¹³C NMR spectra were recorded on a Bruker WP 200 spectrometer also with tetramethylsilane as internal standard. Column chromatography was performed on Kieselgel (Macherey and Nagel, 0.05-0.2 mm) or aluminum oxide (basic, Macherey and Nagel, deactivated with 5% water). The separations were monitored by TLC on DC-Fertigplatten Polygram Sil G/UV₂₅₄ or Alugram Sil G/UV₂₅₄ using the same eluent systems as for the column chromatography. Reactions with lithiated diazo esters were carried out under an argon atmosphere. All solvents employed were anhydrous and were distilled before use.

4-Methyl-2,6-diphenylpyrylium Tetrafluoroborate (6b). To a suspension of 16.6 g (49.9 mmol) of 2,6-diphenylpyrylium perchlorate⁴ in 150 mL of ether was added dropwise under nitrogen a solution of 12.5 g (75.2 mmol) of methylmagnesium iodide in 100 mL of ether, and the mixture was stirred for 2 h at room temperature. Washing with 50 mL of saturated aqueous ammonium chloride solution and with 100 mL of water, drying with magnesium sulfate, and evaporation at 30 °C (15 Torr) gave 11.6 g (94%) of 4-methyl-2,6-diphenyl-4H-pyran, which was used in the next step without further purification.

A solution of 10.0 g (40.3 mmol) of the 4H-pyran in 50 mL of acetonitrile was treated with 13.3 g (40.3 mmol) of triphenylcarbenium tetrafluoroborate, and the mixture was stirred at room temperature for 3 h. Evaporation at 30 °C (15 Torr), taking up of the residue in about 5 mL of acetone, and addition of 200 mL of ether yielded 11.9 g (89%) of 6b as a red-brown, crystalline powder, mp 234 °C dec (lit.²⁵ mp 236-240 °C).

Reaction of 2,4,6-Trimethylpyrylium Tetrafluoroborate (6a) with Ethyl Diazoacetate (7a). To a solution of 1.14 g (10.0 mmol) of the diazoacetate 7a²⁶ in 200 mL of tetrahydrofuran/ether (1/1) cooled to -115 °C was added dropwise with stirring within 30 min 6.3 mL (10.1 mmol) of a 1.6 N n-butyllithium solution in hexane,²⁷ previously cooled to -78 °C. Over the next 30 min, 2.10 g (10.0 mmol) of the pyrylium salt $6a^{28}$ was added in portions. The mixture was allowed to warm to -78 °C and was stirred for 4 h. It was then allowed to warm to room temperature and 100 mL of dichloromethane added. The mixture was washed twice with 50-mL portions of saturated, aqueous sodium hydrogen carbonate solution and once with 50 mL of water and then dried over magnesium sulfate. Concentration at 30 °C (15 Torr) gave 2.10 g of a red oil, which was chromatographed on 220 g of Kieselgel with ethyl acetate/hexane (1/1) to give the following in succession.

(a) Ethyl diazo(2,4,6-trimethyl-4H-pyran-4-yl)acetate (8a): 0.48 g (20%); yellow oil; IR (film) 2075 (C= N_2), 1695 cm⁻¹ (br, C= O/C=C); ¹H NMR (CDCl₃) δ 1.25 (3 H, t, J = 7.1 Hz, CH₃-ethyl), 1.42 (3 H, s, 4-CH₃), 1.81 (6 H, s, 2,6-CH₃), 4.18 (2 H, q, J = 7.1Hz, CH₂-ethyl), 4.62 (2 H, s, 3,5-H). Anal. Calcd for C₁₂H₁₆N₂O₃: C, 61.00; H, 6.83; N, 11.86. Found: C, 60.8; H, 6.83; N, 11.7.

(b) Ethyl 3-acetyl-4,6-dimethyl-1H-1,2-diazepine-7-carboxylate (13a): 0.45 g (19%); orange oil, obtained in analytical purity by

⁽²¹⁾ Bethäuser, W.; Weber, B.; Heydt, H.; Regitz, M. Chem. Ber. 1985, 118, 1315 and references cited therein.

⁽²²⁾ Rastetter, W. H.; Richard, T. J. Tetrahedron Lett. 1978, 2929. (23) Boyd, D. R.; Berchtold, G. A. J. Org. Chem. 1979, 44, 468. Va-nEpp, J. E.; Boyd, D. R.; Berchtold, G. A. J. Org. Chem. 1981, 46, 1817.

⁽²⁴⁾ Ban, T.; Kanematsu, K. Heterocycles 1981, 15, 373. (25) Balaban, A. T., Nenitzescu, C. Justus Liebigs Ann. Chem. 1959,

^{625, 74.} (26) Searle, N. E. Organic Syntheses; Wiley: New York, 1963; Collect.

⁽²⁰⁾ Bearth, A. D. Organic Lynn, M. J. Organic Syntheses; Wiley: New York, 1973; Collect. Vol. V, p 1112.

further chromatography on 50 g of Kieselgel eluting with ethyl acetate/hexane (1/2); IR (film) 3330 (NH), 1715, 1690 (C=O), 1615 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.35 (3 H, t, J = 7.2 Hz, CH₃-ethyl), 1.99 (3 H, d, J = 1.6 Hz, 4-CH₃), 2.09 (3 H, d, J = 0.6 Hz, 6-CH₃), 2.38 (3 H, s, CH₃-acetyl), 4.29 (2 H, q, J = 7.2 Hz, CH₂-ethyl), 6.31 (1 H, qq, J = 1.6, 0.6 Hz, 5-H), 7.25 (1 H, s, NH); ¹³C NMR (CDCl₃) δ 14.3 (CH₃-ethyl), 18.7 (6-CH₃), 21.8 (CH₃-acetyl), 13.3 (C-7), 138.2 (C-6), 141.5 (C-5), 142.6 (C-4), 162.5 (C-3), 163.6 (CO-ester), 198.4 (CO-acetyl). Anal. Calcd for C₁₂H₁₆N₂O₃: C, 61.00; H, 6.83; N, 11.86. Found: C, 60.8; H, 6.76; N, 11.7.

Reaction of 2,4,6-Trimethylpyrylium Tetrafluoroborate (6a) with Dimethyl Diazomethanephosphonate (7b). Diazo ester 7b²⁹ (1.50 g, 10.0 mmol) in 200 mL of tetrahydrofuran/ether (1/1) was reacted at -78 °C with 6.3 mL (10.1 mmol) of 1.6 N *n*-butyllithium solution in hexane²⁷ and 2.10 g (10.0 mmol) of pyrylium salt 6a²⁸ and worked up as described above for the reaction 6a + 7a. A red-brown oil (2.20 g) was obtained and chromatographed on 800 g of basic aluminum oxide with ethyl acetate as eluent to give the following successively.

(a) A decomposition product (0.5 g) of 6a, which was not studied further.

(b) Dimethyl diazo(2,4,6-trimethyl-4*H*-pyran-4-yl)methanephosphonate (8b): 0.59 g (22%); yellow crystals; mp 51 °C (from pentane); IR (KBr) 2075 (C=N₂), 1700 (C=C), 1245 (P=O), 1020 cm⁻¹ (POC); ¹H NMR (CDCl₃) δ 1.30 (3 H, s, 4-CH₃), 1.83 (6 H, s, 2,6-CH₃), 3.75 (6 H, d, $J_{\rm H,P}$ = 11.7 Hz, POCH₃), 4.54 (2 H, s, 3,5-H). Anal. Calcd for C₁₁H₁₇N₂O₄P: C, 48.53; H, 6.29; N, 10.29. Found: C, 48.7; H, 6.21; N, 10.2.

(c) Dimethyl 3-acetyl-4,6-dimethyl-1*H*-1,2-diazepine-7-phosphonate (13b): 0.56 g (21%); orange crystals; mp 51 °C (from ether/pentane, 1/1); IR (KBr) 3310, 3275 (NH), 1685 (C=O), 1620, 1610 (C=C), 1245 (P=O), 1040, 1010 cm⁻¹ (POC); ¹H NMR (CD₂Cl₂) δ 1.91 (3 H, dd, $J_{H,P} = 2.8$ Hz, $J_{H,H} = 0.5$ Hz, 6-CH₃), 1.95 (3 H, dd, $J_{H,H} = 1.6$ Hz, $J_{H,P} = 0.7$ Hz, 4-CH₃), 2.34 (3 H, s, CH₃-acetyl), 3.71 (6 H, d, $J_{H,P} = 11.5$ Hz, 9CCH₃), 6.31 (1 H, dqq, $J_{H,P} = 1.3$ Hz, $J_{H,H} = 1.6$, 0.5 Hz, 5-H), 6.76 (1 H, d, $J_{H,P} = 12.1$ Hz, NH); ¹³C NMR (CDCl₃) δ 17.5 (d, $J_{C,P} = 2.7$ Hz, 6-CH₃), 21.6 (4-CH₃), 27.4 (CH₃-acetyl), 52.7 (d, $J_{C,P} = 4.6$ Hz, POCH₃), 131.9 (d, $J_{C,P} = 184.3$ Hz, C-7), 140.0 (d, $J_{C,P} = 15.4$ Hz, C-5), 141.2 (d, $J_{C,P} = 21.2$ Hz, C-6), 143.2 (d, $J_{C,P} = 2.5$ Hz, C-4), 162.0 (C-3), 197.9 (CO). Anal. Calcd for C₁₁H₁₇N₂O₄P: C, 48.53; H, 6.29; N, 10.29. Found: C, 48.4; H, 6.20; N, 10.3.

Ethyl Diazo(2,6-diphenyl-4-methyl-4H-pyran-4-yl)acetate (8c). Diazo ester $7a^{26}$ (1.14 g, 10.0 mmol) in 200 mL of tetrahydrofuran/ether (1/1) at -115 °C was reacted with 6.3 mL (10.1 mmol) of a previously cooled (to -78 °C) 1.6 N solution of *n*butyllithium in hexane²⁷ and 3.34 g (10.0 mmol) of pyrylium salt 6b as described above for the reaction of 6a + 7a. Ether (200 mL) was added, and the mixture was worked up to give a dark red oil, which was purified by chromatography on 390 g of Kieselgel with ethyl acetate/hexane (1/9) as eluent. The eluted product was taken up in 20 mL of ether, stirred with 2 g of active charcoal, filtered, and evaporated at 30 °C (15 Torr) to give 1.41 g (39%) of 8c as a pale yellow oil: IR (film) 2080 (C=N₂), 1685 cm⁻¹ (br, C=O/C=C); ¹H NMR (CDCl₃) δ 1.22 (3 H, t, *J* = 7.1 Hz, CH₃-ethyl), 1.65 (3 H, s, 4-CH₃), 4.18 (2 H, q, *J* = 7.1 Hz, CH₂-ethyl), 5.50 (2 H, s, 3,5-H), 7.31 (10 H, m, H-arom). Anal. Calcd for C₂₂H₂₀N₂O₃: C, 73.32; H, 5.59; N, 7.77. Found: C, 73.5; H, 5.69; N, 7.6.

Dimethyl Diazo(2,6-diphenyl-4-methyl-4*H*-pyran-4-yl)methanephosphonate (8d). Diazo ester 7b²⁹ (1.50 g, 10.0 mmol) in 200 mL of tetrahydrofuran/ether (1/1) at -78 °C was reacted with 6.3 mL (10.1 mmol) of 1.6 N *n*-butyllithium solution in hexane²⁷ and 3.34 g (10.0 mmol) of pyrylium salt 6b, as described for the reaction of 6a + 7a, and worked up after addition of 200 mL of ether. A dark red oil was obtained and was purified by chromatography on 250 g of Kieselgel with ethyl acetate as eluent. Further chromatography on 400 g of neutral aluminum oxide with the same eluent gave 0.71 g (18%) of 8d as an orange oil: IR (film) 2075 (C=N₂), 1680 (C=C), 1260 (P=O), 1025 cm⁻¹ (POC); ¹H NMR (CDCl₃) δ 1.56 (3 H, s, 4-CH₃), 3.77 (6 H, d, J_{H,P} = 11.8 Hz, POCH₃), 5.45 (2 H, s, 3,5-H), 7.40-7.75 (10 H, m, H-arom). Anal. J. Org. Chem., Vol. 52, No. 17, 1987 3855

63.7; H, 5.51; N, 6.8. Ethyl 2,5,7-Trimethyl-4-oxepinecarboxylate (14a). A solution of 0.47 g (2.0 mmol) of diazo ester 8a in 50 mL of benzene was stirred with 15 mg of allylpalladium chloride (dimer)³⁰ for 2 h at room temperature, and then the mixture was evaporated. The residue was chromatographed on 80 g of basic aluminum oxide with ethyl acetate/hexane (1/2) as eluent to give 0.40 g (97%) of 14a as a yellow oil: IR (film) 1710 (C=O), 1662, 1645, 1562 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.30 (3 H, t, J = 7.2 Hz, CH₃-ethyl), 1.92 (6 H, s, 2,7-CH₃), 2.11 (3 H, s, 5-CH₃), 4.19 (2 H, q, J = 7.2 Hz, CH₂-ethyl), 5.35 (1 H, s, 3-H); 5.78 (1 H, s, 6-H); ¹³C NMR (CDCl₃) δ 14.1 (CH₂-ethyl), 20.8 (5-CH₃), 21.5, 21.6 (2,7-CH₃), 60.1 (CH₂-ethyl), 111.5 (C-3), 116.8 (C-6), 126.3 (C-4), 144.4 (C-5), 150.6 (C-2), 155.2 (C-7), 167.2 (CO). Anal. Calcd for C₁₂H₁₆O₃: C, 69.21; H, 7.74. Found: C, 68.9; H, 7.77.

Dimethyl 2,5,7-Trimethyl-4-oxepinephosphonate (14b). A solution of 0.54 g (2.0 mmol) of diazo ester 8b in 50 mL of benzene was stirred at room temperature with 15 mg of allylpalladium chloride (dimer)³⁰ for 2 h, and then the mixture was evaporated at 30 °C (15 Torr). Dissolution of the residue in 25 mL of ether, addition of 0.5 g of active charcoal, filtration after 10 min, and renewed evaporation gave 0.45 g (92%) of 14b as a yellow oil: IR (film) 1655, 1555 (C=C), 1250 (P=O), 1055, 1035 cm⁻¹ (POC); ¹H NMR (acetone- d_6) δ 1.90, 1.92 (each 3 H, each s, 2,7-CH₃), 2.12 $(3 \text{ H}, \text{ d}, J_{\text{H,P}} = 3.2 \text{ Hz}, 5\text{-CH}_3), 3.64 (6 \text{ H}, \text{ d}, J_{\text{H,P}} = 11.2 \text{ Hz},$ $POCH_3$, 5.49 (1 H, d, $J_{H,P}$ = 3.3 Hz, 3-H), 5.60 (1 H, d, $J_{H,P}$ = 8.0 Hz, 6-H); ¹³C NMR (acetone-d₆) δ 21.1, 21.6 (2,7-CH₃), 21.9 (d, $J_{C,P} = 6.1$ Hz, 5-CH₃), 52.3 (d, $J_{C,P} = 5.6$ Hz, POCH₃), 113.9 (d, $J_{C,P}$ = 11.6 Hz, C-3), 118.0 (d, $J_{C,P}$ = 20.9 Hz, C-6), 123.5 (d, $J_{C,P} = 181.9$ Hz, C-4), 149.9 (d, $J_{C,P} = 10.4$ Hz, C-5), 150.7 (d, $J_{C,P} = 13.2$ Hz, C-2), 153.3 (C-7). Anal. Calcd for $C_{11}H_{17}O_4P$: C, 54.10; H, 7.02. Found: C, 54.0; H, 6.95.

Ethyl 2,7-Diphenyl-5-methyl-4-oxepinecarboxylate (14c). A solution of 0.72 g (2.0 mmol) of the diazo ester 8c in 50 mL of benzene was stirred at room temperature with 15 mg of allyl-palladium chloride (dimer)³⁰ for 4 h, and the mixture was then evaporated at 30 °C (15 Torr). The residue was chromatographed on 100 g of Kieselgel with ethyl acetate/hexane (1:9) as eluent to yield 0.65 g (98%) of 14c as an orange oil: IR (film) 1708 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 1.33 (3 H, t, J = 7.1 Hz, CH₂-ethyl, 2.33 (3 H, s, 5-CH₃), 4.28 (2 H, q, J = 7.1 Hz, CH₂-ethyl), 6.22 (1 H, s, 3-H), 6.70 (1 H, s, 6-H), 7.26-7.73 (10 H, m, H-arom); ¹³C NMR (CDCl₃) δ 14.3 (CH₃-ethyl), 22.2 (5-CH₃), 60.6 (CH₂-ethyl), 113.0 (C-3), 117.8 (C-6), (C-6), 127.8 (C-4), 126.1-135.0 (C-arom), 144.7 (C-5), 151.0 (C-2), 154.6 (C-7), 167.5(CO). Anal. Calcd for C₂₂H₂₀O₃: C, 79.50; H, 6.06. Found: C, 79.5; H, 6.20.

Dimethyl 2,7-Diphenyl-5-methyl-4-oxepinephosphonate (14d). A solution of 0.79 g (2.0 mmol) of the diazo ester 8d in 50 mL of benzene was stirred at room temperature with 15 mg of allylpalladium chloride (dimer)³⁰ for 4 h, and the mixture was then evaporated at 30 °C (15 Torr). The residue was chromatographed on 100 g of Kieselgel with ethyl acetate as eluent to yield 0.71 g (96%) of 14d as orange crystals: mp 94 °C; IR (KBr) 1615, 1520 (C=-C), 1240 (P=-O), 1055, 1020 cm⁻¹ (POC); ¹H NMR (CDCl₃) δ 2.38 (3 H, dd, $J_{H,P}$ = 3.1 Hz, $J_{H,H}$ = 0.5 Hz, 5-CH₃), 3.79 (6 H, d, $J_{H,P}$ = 11.2 Hz, POCH₃), 6.24 (1 H, d, $J_{H,P}$ = 3.4 Hz, 3-H), 6.53 (1 H, dq, $J_{H,P}$ = 9.0 Hz, $J_{H,H}$ = 0.5 Hz, 6-H), 7.25-7.75 (10 H, m, H-arom); ¹³C NMR (CDCl₃) δ 22.5 (d, $J_{C,P}$ = 6.0 Hz, 5-CH₃), 52.3 (d, $J_{C,P}$ = 5.2 Hz, POCH₃), 113.7 (d, $J_{C,P}$ = 12.2 Hz, C-3), 117.7 (d, $J_{C,P}$ = 21.1 Hz, C-6), 122.8 (d, $J_{C,P}$ = 183.6 Hz, C-4), 126.1–134.7 (C-arom), 149.8 (d, $J_{C,P}$ = 11.4 Hz, C-5), 151.2 (d, $J_{C,P}$ = 14.4 Hz, C-2), 154.8 (d, $J_{C,P}$ = 2.5 Hz, C-7). Anal. Calcd for C₂₁H₂₁O₄P: C, 68.47; H, 5.75. Found: C, 68.3; H, 5.81.

Kieselgel-Catalyzed Isomerization of Oxepine 14a to Ethyl 1-Oxo-4,6,6-trimethyl-2,4-cyclohexadiene-3-carboxylate (18a) and Ethyl 3-Hydroxy-2,4,6-trimethylbenzoate (19a). Oxepine 14a (0.42 g, 2.0 mmol) was chromatographed on 200 g of Kieselgel with ethyl acetate (elution time 8 h), and 0.35 g (83%) of an oily, 2/1 mixture (by ¹H NMR spectroscopy) of 19a and 18a was obtained. Column chromoatography on 50 g of Kieselgel with ethyl acetate/hexane (1/9) as eluent furnished the following in succession.

⁽²⁹⁾ Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379.

⁽³⁰⁾ Commercial product from EGA-Chemie, D-7924 Steinheim.

(a) Cyclohexadienone 18a: 0.11 g (26%); colorless oil; obtained in analytical purity after Kugelrohr distillation at 90 °C (oven temperature) (0.15 Torr); IR (film) 1725, 1662 (C=O), 1640 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.20 (6 H, s, 6-CH₃), 1.36 (3 H, t, J = 7.2 Hz, CH₃-ethyl), 2.04 (3 H, dd, J = 1.5, 0.4 Hz, 4-CH₃), 4.33 (2 H, q, J = 7.2 Hz, CH₂-ethyl), 6.04 (1 H, dq, J = 1.5, 0.7 Hz, 5-H), 6.36 (1 H, s, br, 2-H); ¹³C NMR (CDCl₃)· δ 14.1 (CH₃-ethyl), 19.7 (4-CH₃), 25.6 (6-CH₃), 47.1 (C-6), 61.7 (CH₂-ethyl), 125.4 (C-4), 125.7 (C-2), 145.8 (C-5), 146.2 (C-3), 166.8 (CO-ester), 206.4 (CO-ketone). Anal. Calcd for C₁₂H₁₆O₃: C, 69.21; H, 7.74. Found: C, 69.0; H, 7.75.

(b) Phenol 19a: 0.23 g (55%); solidified after Kugelrohr distillation at 130 °C (oven temperature) (0.15 Torr); colorless crystals; mp 54 °C; IR (KBr) 3480 (OH), 1700 cm⁻¹ (CO); ¹H NMR (CDCl₃) δ 1.33 (3 H, t, J = 7.1 Hz, CH₃-ethyl), 2.11, 2.12 (each 3 H, each s, 2,6-CH₃), 2.17 (3 H, s, 4-CH₃), 4.35 (2 H, q, J = 7.1 Hz, CH₂-ethyl), 5.75 (1 H, s, OH), 6.71 (1 H, s, 5-H); ¹³C NMR (CDCl₃) δ 13.0 (2-CH₃), 14.3 (CH₃-ethyl), 16.0 (4-CH₃), 18.8 (6-CH₃), 61.1 (CH₂-ethyl), 120.7 (C-4), 125.0 (C-1), 126.1 (C-2), 130.0 (C-5), 132.9 (C-6), 150.3 (C-3), 170.4 (CO). Anal. Calcd for C₁₂H₁₆O₃: C, 69.21; H, 7.74. Found: C, 69.2; H, 7.79.

Kieselgel-Catalyzed Isomerization of Oxepine 14b to Dimethyl 1-Oxo-4,6,6-trimethyl-2,4-cyclohexadiene-3phosphonate (18b) and Dimethyl 3-Hydroxy-2,4,6-trimethylbenzene-1-phosphonate (19b). Oxepine 14b (0.48 g, 2.0 mmol) was chromatographed on 50 g of Kieselgel with ethyl acetate as eluent (elution time 3 H), and 0.46 g (96%) of an oily, 2/1 mixture of 18b and 19b (by ¹H NMR spectroscopy) was obtained.

(a) Crystallization from ether/pentane (1/1) furnished 0.30 g (62%) of phenol **19b** as colorless crystals: mp 123 °C; IR (KBr) 3220 (OH), 1600 (C=-C), 1215 (P=-O), 1055, 1015 cm⁻¹ (POC); ¹H NMR (CDCl₃) δ 2.26 (3 H, s, 4-CH₃), 2.48 (3 H, d, $J_{H,P} = 1.8$ Hz, 2-CH₃), 2.50 (3 H, d, $J_{H,P} = 1.8$ Hz, 6-CH₃), 3.70 (6 H, d, $J_{H,P} = 11.5$ Hz, POCH₃), 6.80 (1 H, s, OH), 6.85 (1 H, d, $J_{H,P} = 6.2$ Hz, 5-H); ¹³C NMR (CDCl₃) δ 14.6 (d, $J_{C,P} = 3.2$ Hz, 2-CH₃), 16.7 (4-CH₃), 22.6 (d, $J_{C,P} = 2.4$ Hz, 6-CH₃), 51.9 (d, $J_{C,P} = 5.6$ Hz, POCH₃), 121.6 (d, $J_{C,P} = 182.0$ Hz, C-1), 129.3 (d, $J_{C,P} = 2.8$ Hz, C-4), 130.2 (d, $J_{P,C} = 13.2$ Hz, C-2), 132.0 (d, $J_{C,P} = 19.1$ Hz, C-5), 135.1 (d, $J_{C,P} = 11.5$ Hz, C-6), 151.4 (d, $J_{C,P} = 20.7$ Hz, C-3). Anal. Calcd for C₁₁H₁₇O₄P: C, 54.10; H, 7.02. Found: C, 53.9; H, 6.92.

(b) Evaporation of the ether/pentane filtrate from 19b and Kugelrohr distillation of the residue at 130 °C (oven temperature) (0.05 Torr) yielded 0.15 g (31%) of cyclohexadienone 18b as a yellow oil: IR (film) 1665 (C=O), 1635 (C=C), 1255 (P=O), 1055, 1035 cm⁻¹ (POC); ¹H NMR (CDCl₃) δ 1.20 (6 H, s, CH₃), 2.12 (3 H, ddd, $J_{\rm H,P} = 10$ Hz, $J_{\rm H,H} = 1.5, 0.6$ Hz, 4-CH₃), 3.84 (6 H, d, $J_{\rm H,P} = 11.1$ Hz, POCH₃), 6.05 (1 H, ddq, $J_{\rm H,P} = 7.3$ Hz, $J_{\rm H,H} = 1.5, 0.8$ Hz, 5-H), 6.59 (1 H, ddq, $J_{\rm H,P} = 20.3$ Hz, $J_{\rm H,H} = 0.8, 0.6$ Hz, 2-H); ¹³C NMR (CDCl₃) δ 20.1 (4-CH₃), 25.4 (6-CH₃), 46.9 (C-6), 53.1 (d, $J_{\rm C,P} = 6.1$ Hz, POCH₃), 124.9 (d, $J_{\rm C,P} = 9.0$ Hz, C-4), 132.4 (d, $J_{\rm C,P} = 4.9$ Hz, C-2), 142.8 (d, $J_{\rm C,P} = 172.5$ Hz, C-3), 145.5 (d, $J_{\rm C,P} = 14.9$ Hz, C-5), 205.3 (d, $J_{\rm C,P} = 19.9$ Hz, CO). Anal. Calcd for $C_{11}H_{17}O_4P$: C, 54.10; H, 7.02. Found: C, 53.9; 6.88.

Ethyl 2-Phenyl-7,10,10-trimethyl-1,3,11-trioxo-5,8-etheno-2,3,5,8-tetrahydro-1H-[1,2,4]triazolo[1,2-a]pyridazine-6carboxylate (24). To a solution of 100 mg (0.48 mmol) of cyclohexadienone 18a in 25 mL of dichloromethane was added dropwise with stirring at room temperature a solution of 84 mg (0.48 mmol) of triazolinedione 23³¹ in 25 mL of dichloromethane. The mixture lost its color and was then evaporated at 30 $^{\circ}$ C (15 Torr) [remaining traces of solvent were removed at 40 °C (10^{-3} Torr)] to give 183 mg (100%) of the adduct 24 as a colorless, crystalline powder: mp 135 °C; IR (KBr) 1770, 1740, 1715, 1700 cm⁻¹ (CO); ¹H NMR (CDCl₃) δ 1.22, 1.40 (each 3 H, each s, 10-CH₃), 1.34 (3 H, t, J = 7.1 Hz, CH₃-ethyl), 2.49 (3 H, s, 7-CH₃), $4.27 (2 H, q, J = 7.1 Hz, CH_2$ -ethyl), 4.71 (1 H, s, 8-H), 5.59 (1 Hz)H, s, 5-H), 7.38–7.49 (5 H, m, H-arom); ¹³C NMR (CDCl₃) δ 14.1 (CH₃-ethyl), 20.9 (7-CH₃), 22.7, 23.8 (10-CH₃), 43.7 (C-10), 61.6 (CH₂-ethyl), 61.8 (C-8), 67.0 (C-5), 121.1 (C-6), 126.3-131,3 (Carom), 155.0, 156.0 (CO-1/CO-3), 156.3 (C-7), 162.3 (CO-ester), 202.1 (CO-11). Anal. Calcd for C₂₀H₂₁N₃O₅: C, 62.65; H, 5.52; N, 10.96. Found: C, 62.2; H, 5.51; N, 10.9.

Ethyl 4,6-Dioxo-5-phenyl-1a,8a,9-trimethyl-2,8-etheno-1a,2,5,6,8,8a-hexahydro-4*H*-oxireno[*d*][1,2,4]triazolo[1,2a]pyridazine-10-carboxylate (25a). To a solution of 0.21 g (1.0 mmol) of oxepine 14a in 10 mL of dichloromethane was added dropwise with stirring at room temperature within 30 min a solution of 0.17 g (0.97 mmol) of triazoline dione $\mathbf{23^{31}}$ in 15 mL of dichloromethane. After 1 h, the mixture was evaporated at 30 °C (15 Torr), and the residue was taken up in 5 mL of ether. Addition of 5 mL of pentane and cooling to -20 °C gave 0.31 g (83%) of the adduct 25a as colorless crystals: mp 125 °C; IR (KBr) 1770, 1715 (CO), 1640 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.32 (3 H, X₃ part of an ABX₃ system, $J_{A,X} = 7.2$ Hz, $J_{B,X} = 7.0$ Hz, CH₃-ethyl), 1.59, 1.61 (each 3 H, each s, 1a,8a-CH₃), 2.33 (3 H, s, 9-CH₃), 4.27 (2 H, AB part of an ABX₃ system, δ_A 4.26, δ_B 4.21, $J_{A,B} = 10.8$ Hz, $J_{A,X} = 7.2$ Hz, $J_{B,X} = 7.0$ Hz, CH_2 ethyl), 4.82 (1 H, s, 2-H), 5.51 (1 H, s, 8-H), 7.28–7.49 (5 H, m, H-arom); ¹³C NMR (CDCl₃) § 13.0 (8a-CH₃), 13.2 (1a-CH₃), 14.2 (CH₃-ethyl), 19.2 (9-CH₃), 53.3 (C-8a), 54.1 (C-1a), 60.5 (C-8), 61.2 (CH₂-ethyl), 65.6 (C-2), 121.9 (C-10), 125.4-131.2 (C-arom), 146.9 (C-9), 156.2, 156.4 (CO-4/CO-6), 163.2 (CO-ester). Anal. Calcd for $C_{20}H_{21}N_3O_5$: C, 62.65; H, 5.52; N, 10.96. Found: C, 62.4; H, 5.64; N, 10.9.

Dimethyl 4,6-Dioxo-5-phenyl-1a,8a,9-trimethyl-2,8etheno-1a,2,5,6,8,8a-hexahydro-4H-oxireno[d][1,2,4]triazolo[1,2-a]pyridazine-10-phosphonate (25b). To a solution of 0.24 g (0.98 mmol) of the oxepine 14b in 10 mL of dichloromethane was added dropwise with stirring at room temperature within 30 min a solution of 0.17 g (0.97 mmol) of the triazolinedione 23³¹ in 15 mL of dichloromethane. After 1 h, the mixture was evaporated at 30 °C (15 Torr), and the oily residue was chromatographed of 50 g of Kieselgel with ethyl acetate as eluent. Renewed evaporation of the eluate at 40 °C (15 Torr), dissolution of the residual oil in a little ethyl acetate, addition of pentane, and cooling to -20 °C produced 0.35 g (86%) of the adduct 25b as colorless crystals: mp 141 °C; IR (KBr) 1775, 1720 (C=O), 1248 (P==O), 1055, 1015 cm⁻¹ (POC); ¹H NMR (CDCl₃) δ 1.59, 1.60 (each 3 H, each s, 1a,8a-CH₃), 2.30 (3 H, d, $J_{H,P}$ = 3.4 Hz, 9-CH₃), 3.71 (3 H, d, $J_{H,P} = 11.4$ Hz, POCH₃), 3.73 (3 H, d, $J_{H,P} = 11.3$ Hz, POCH₃), 4.80 (1 H, d, $J_{H,P} = 5.2$ Hz, 8-H), 5.14 (1 H, d, $J_{\rm H,P}$ = 8.4 Hz, 2-H), 7.30–7.47 (5 H, m, H-arom); ¹³C NMR $(CDCl_3) \delta 13.0, 13.1 (1a,8a-CH_3), 19.6 (d, J_{C,P} = 4.6 Hz, 9-CH_3),$ 52.5, 52.7 (each d, $J_{C,P}$ = 5.6 Hz, POCH₃), 52.9 (d, $J_{C,P}$ = 2.2 Hz, C-8a), 54.3 (d, $J_{C,P}$ = 4.3 Hz, C-1a), 61.6 (d, $J_{C,P}$ = 12.6 Hz, C-8), 64.8 (d, $J_{C,P} = 15.3$ Hz, C-2), 118.4 (d, $J_{C,P} = 190.8$ Hz, C-10), 125.5–131.1 (C-arom), 151.5 (d, $J_{C,P} = 8.7$ Hz, C-9), 156.1, 156.5 (CO-4/CO-6). Anal. Calcd for $C_{19}H_{22}N_3O_6P$: C, 54.42; H, 5.29; N, 10.02. Found: C, 54.2; H, 5.38; N, 10.0.

Reaction of Oxepine 14c with Triazolinedione 23. To a solution of 1.0 g (3.0 mmol) of oxepine 14c in 10 mL of dichloromethane was added dropwise with stirring at room temperature within 30 min a solution of 0.52 g (3.00 mmol) of triazolidinedione 23^{31} in 45 mL of dichloromethane. After 1 h, the mixture was evaporated at 30 °C (15 Torr).

(a) By fractional crystallization of the pale yellow, oily residue from dichloromethane/ether 1.0 g (66%) of ethyl 7-endobenzoyl-1,3-dioxo-2,5-diphenyl-7a-methyl-2,3,6a,7a-tetrahydro-1*H*,7*H*-cyclopropa[c][1,2,4]triazolo[1,2-a]pyridazine-6a-carboxylate (**27c**) was obtained as colorless crystals: mp 151 °C; IR (KBr) 1780, 1725 (C=O), 1657 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.35 (3 H, X₃ part of an ABX₃ system, $J_{A,X} = J_{B,X} = 7.1$ Hz, CH₃-ethyl), 2.13 (3 H, s, 7a-CH₃), 3.95 (1 H, s, 7-H), 4.35 (2 H, AB part of an ABX₃ system, δ_A 4.39, δ_B 4.32, $J_{A,B} = 10.5$ Hz, $J_{A,X} = J_{B,X} = 7.1$ Hz, CH₂-ethyl), 5.22 (1 H, s, 6-H), 7.23-8.05 (15 H, m, H-arom); ¹³C NMR (CDCl₃) δ 14.3 (CH₃-ethyl), 18.6 (7a-CH₃), 3.64 (C-7a), 43.5 (C-7), 48.7 (C-6a), 63.1 (CH₂-ethyl), 100.7 (C-6), 127.1 (C-5), 125.6-137.5 (C-arom), 147.6, 147.9 (CO-1/CO-3), 169.0 (CO-ester), 193.4 (CO-benzoyl). Anal. Calcd for C₃₀H₂₅N₃O₅: C, 70.99; H, 4.96; N, 8.28. Found: C, 70.7; H, 5.04; N, 8.3.

(b) By evaporation of the filtrate from **27c** at 30 °C (15 Torr), dissolution of the residue in ether/pentane (1/1), and cooling at -20 °C, 0.34 g (23%) of ethyl 4,6-dioxo-9-methyl-1a,5,8a-triphenyl-2,8-etheno-1a,2,5,6,8,8a-hexahydro-4*H*-oxireno[*d*][1,2,4]-triazolo[1,2-*a*]pyridazine-10-carboxylate (**25c**) was obtained as colorless crystals: mp 162 °C; IR (KBr) 1775, 1720 (C=O), 1695 cm⁻¹ (C=C); ¹H NMR (CDCl₃) δ 1.30 (3 H, X₃ part of an ABX₃ system, $J_{A,X} = 7.3$ Hz, $J_{B,X} = 7.0$ Hz, CH₃-ethyl), 2.45 (3 H, s, 9-CH₃), 4.26 (2 H, AB part of an ABX₃ system, δ_A 4.28, δ_B 4.23,

 $\begin{array}{l} J_{\rm A,B} = 10.9 \ {\rm Hz}, \, J_{\rm A,X} = 7.3 \ {\rm Hz}, \, J_{\rm B,X} = 7.0 \ {\rm Hz}, \, {\rm CH}_2\text{-ethyl}), \, 5.40 \ (1 \\ {\rm H}, \, {\rm s}, \, 8\text{-H}), \, 6.07 \ (1 \ {\rm H}, \, {\rm s}, \, 2\text{-H}), \, 7.17 - 7.56 \ (15 \ {\rm H}, \, {\rm m}, \, {\rm H-arom}); \, ^{13}{\rm C} \\ {\rm NMR} \ ({\rm CDCl}_3) \ \delta \ 14.2 \ ({\rm CH}_3\text{-ethyl}), \, 19.3 \ (9\text{-CH}_3), \, 58.3 \ (\text{C-8a}), \, 59.4 \\ (\text{C-1a}), \ 61.3 \ (\text{C-8}), \ 61.5 \ ({\rm CH}_2\text{-ethyl}), \ 66.3 \ (\text{C-2}), \ 122.8 \ (\text{C-10}), \\ 125.5 - 137.5 \ (\text{C-arom}), \, 153.1 \ (\text{C-9}), \, 156.3, \, 156.5 \ (\text{CO-4/CO-6}), \, 163.4 \\ (\text{CO-ester}). \ {\rm Anal.} \ {\rm Calcd} \ {\rm for} \ {\rm C}_{30}{\rm H}_{25}{\rm N}_3{\rm O}_5; \ {\rm C}, \, 70.99; \ {\rm H}, \, 4.96; \ {\rm N}, \\ 8.28. \ {\rm Found:} \ {\rm C}, \, 70.7; \ {\rm H}, \, 5.01; \ {\rm N}, \, 8.4. \end{array}$

Dimethyl 4,6-Dioxo-9-methyl-1a,5,8a-triphenyl-2,8etheno-1a,2,5,6,8,8a-hexahydro-4H-oxireno[d][1,2,4]triazolo[1,2-a]pyridazine-10-phosphonate (25d). To a solution of 0.74 g (2.0 mmol) of oxepine 14d in 25 mL of dichloromethane was added dropwise with stirring at room temperature within 30 min a solution of 0.35 g (2.0 mmol) of the triazolinedione 23^{31} in 25 mL of dichloromethane. After 1 h, the mixture was evaporated at 30 °C (15 Torr), and the residue was dissolved in ether. The resultant solution was treated with pentane until a slight cloudiness was observed, and then cooled at -20 °C for 24 h. The adduct 25d was obtained as colorless crystals: 0.89 g (82%); mp 208 °C; IR (KBr) 1775, 1725 (C=O), 1625 (C=C), 1253 (P=O), 1020 cm⁻¹ (POC); ¹H NMR δ 2.42 (3 H, d, $J_{H,P}$ = 3.4 Hz, 9-CH₃), 3.76 (3 H, d, $J_{H,P}$ = 11.3 Hz, POCH₃), 3.77 (3 H, d, $J_{H,P}$ = 11.4 Hz, POCH₃), 5.38 (1 H, d, $J_{H,P}$ = 5.0 Hz, 8-H), 5.67 (1 H, d, J_{HSP} = 8.4 Hz, 2-H), 7.23-7.50 (15 H, m, H-arom); ¹³C NMR (CDCl₃) δ 19.8 (d, $J_{C,P}$ = 4.2 Hz, 9-CH₃), 52.6 (d, $J_{C,P}$ = 4.8 Hz, POCH₃), 52.9 (d, $J_{C,P} = 5.9$ Hz, POCH₃), 57.9 (C-8a), 59.7 (d, $J_{C,P} = 4.4$ Hz, C-1a), 62.4 (d, $J_{C,P}$ = 13.1 Hz, C-8), 65.3 (d, $J_{C,P}$ = 15.1 Hz, C-2), 119.2 (d, $J_{C,P}$ = 191.2 H, C-10), 125.5–132.3 (C-arom), 152.1 (d, $J_{C,P}$ = 9.3 Hz, C-9), 156.0, 156.4 (CO-4/CO-6). Anal. Calcd for C₂₉H₂₆N₃O₆P: C, 64.09; H, 4.82; N, 7.73. Found: C, 63.8; H, 4.92; N, 7.7.

X-ray Analysis of 25d. Crystal data: $C_{29}H_{26}N_{3}O_{6}P$, MW 543.5; orthorhombic space group $P2_{1}2_{1}2_{1}$; a = 7.956 (3), b = 16.370

(3), c = 20.340 (3) Å; Z = 4; $D_{calc} = 1.361$ g cm⁻³. Data collection: Enraf-Nonius CAD 4 diffractometer, monochromatized Mo K α radiation; crystal size $0.55 \times 0.24 \times 0.24$ mm, 2371 unique reflections ($2 \le \theta \le 24^{\circ}$), scan width ($0.90 + 0.35 \tan \theta$)°, scan speed $1.67-5^{\circ}$ min⁻¹. Three monitoring reflections gave no hint to systematic changes of intensity. Structure solution and refinement: solution by MULTAN 82, full-matrix least-squares refinement of 456 variables with 1965 observations ($I > 2.2\sigma(I)$, unit weights). Hydrogen atoms were refined with isotropic temperature factors (B = 5.0 Å² except for C28 and C29 (B = 8.0 Å²)). Final values: R = 0.043, $R_w = (\sum \Delta^2 F / \sum F_0^2)^{1/2} = 0.040$; maximum shift/error ratio 1.88 for H atoms, 0.60 for heavy atoms. All callculations were carried out on a PDP 11/23 plus computer using the Enraf-Nonius SDP software.

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support of this work.

Registry No. 6a, 773-01-3; **6b**, 2340-23-0; **8a**, 109216-89-9; **8b**, 109216-90-2; **8c**, 109216-91-3; **8d**, 109216-92-4; **13a**, 109216-93-5; **13b**, 109216-94-6; **14a**, 109216-95-7; **14b**, 109216-96-8; **14c**, 109216-97-9; **14d**, 109216-98-0; **18a**, 109216-99-1; **18b**, 109217-00-7; **19a**, 109217-01-8; **19b**, 109217-02-9; **23**, 4233-33-4; **24**, 109241-75-0; **25a**, 109217-05-2; **25b**, 109217-06-3; **25c**, 109217-03-0; **25d**, 109217-04-1; **27c**, 109217-07-4; N₂=CHCO₂Et, 623-73-4; N₂=CHPO(OMe)₂, 27491-70-9; 2,6-diphenylpyrylium perchlorate, 3558-68-7; 4-methyl-2,6-diphenyl-4H-pyran, 55696-71-4.

Supplementary Material Available: ORTEP drawing and tables of positional and thermal parameters, bond distances, bond angles, and general thermal factors for 25d (8 pages). Ordering information is given on any current masthead page.

Sulfur-33 NMR of Cyclic Sulfides, Sulfoxides, and Sulfones

G. Barbarella,*[†] A. Bongini,[‡] C. Chatgilialoglu,[†] S. Rossini,[†] and V. Tugnoli[‡]

Istituto dei Composti del Carbonio Contenenti Eteroatomi e loro Applicazioni, Consiglio Nazionale delle Ricerche, 40064 Ozzano Emilia, Bologna, Italy, and Istituto Chimico G. Ciamician, Universita', 40126 Bologna, Italy

Received November 18, 1986

Natural abundance sulfur-33 chemical shifts were measured for three-, four-, five-, and six-membered ring sulfides, sulfoxides, and sulfones and the atomic charges at sulfur calculated for all compounds. With increasing oxidation of the sulfur atom there is proportionality between the chemical shift and the atomic charge only for three-membered ring compounds. Thiirane, thiirane 1-oxide, and thiirane 1,1-dioxide are shielded by several tens of ppm with respect to larger rings or the dimethyl analogues. The results are discussed in terms of a balance between the factors contributing to the chemical shift, namely, the atomic charge, the bond-order term, and the mean excitation energy.

Sulfur-containing compounds are useful intermediates in a variety of new syntheses of biologically important products.¹ Sulfur-33 NMR could in principle have a number of chemical applications, such as the identification of conformation or structure of sulfur-containing compounds, since NMR chemical shifts are intimately related to the electronic environment of a given nucleus.² Unfortunately, the experimental difficulties associated with sulfur-33 NMR³ have discouraged organic chemists from exploring this interesting field, and even the chemical shifts of the most common organosulfur compounds are still unknown.

We have now measured the sulfur-33 chemical shifts of three-, four-, five-, and six-membered ring systems containing the sulfenyl (-S-), sulfinyl (-SO-), and sulfonyl (-SO₂-), functional groups, i.e., compounds 1-5. Furthermore the charges at the sulfur atom were calculated for these compounds in order to find out whether there

[†]Consiglio Nazionale delle Ricerche.

[‡]Universita', Bologna.

⁽¹⁾ Perspectives in the Organic Chemistry of Sulfur; Zwanenburg, B., Klunder, A. J. H., Eds.; Elsevier: Amsterdam, 1987.

^{(2) (}a) Webb, G. A. In NMR and the Periodic Table; Harris, R., Mann, B. E., Eds.; Academic: London, 1980; Chapter 3. (b) Webb, G. A. In The Multinuclear Approach to NMR Spectroscopy; Lambert, J. B., Riddel, F. G., Eds.; NATO ASI Series C 103; D. Reidel: Dordrecht, 1982; Chapter 2.

^{(3) (}a) Faure, R.; Vincent, E. G.; Ruiz, J. M.; Lena, L. Org. Magn. Reson. 1981, 15, 401.
(b) Harris, D. L.; Evans, S. A., Jr. J. Org. Chem. 1982, 47, 3355.
(c) Annunziata, R.; Barbarella, G. Org. Magn. Reson. 1984, 22, 250.
(d) Cassidei, L.; Fiandese, V.; Marchese, G.; Sciacovelli, O. Org. Magn. Reson. 1984, 22, 486.
(e) Belton, P. S.; Cox, G.; Harris, R. H. J. Chem. Soc., Faraday Trans. 2 1985, 81, 63.
(f) Eckert, H.; Yesinowski, J. P. J. Am. Chem. Soc. 1986, 108, 2140.
(g) Barbarella, G.; Chatgilialoglu, C.; Rossini, S.; Tugnoli, V. J. Magn. Reson. 1986, 70, 204.